MiniSat.C 27.7 KB
Newer Older
Masahiko Sakai's avatar
Masahiko Sakai committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/***************************************************************************************[MiniSat.C]
Copyright (c) 2005-2010, Niklas Een, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/

#include "MiniSat.h"
#include "Sort.h"
#include <cmath>


namespace MiniSat {
//=================================================================================================
// Debug:


// For derivation output (verbosity level 2)
#define L_IND    "%-*d"
#define L_ind    decisionLevel()*3+3,decisionLevel()
#define L_LIT    "%sx%d"
#define L_lit(p) sign(p)?"~":"", var(p)

// Just like 'assert()' but expression will be evaluated in the release version as well.
inline void check(bool expr) { assert(expr); }


//=================================================================================================
// Helpers:


void removeWatch(vec<LitClauseUnion>& ws, LitClauseUnion elem)
{
    int j = 0;
    for (; ws[j] != elem  ; j++) assert(j < ws.size());
    for (; j < ws.size()-1; j++) ws[j] = ws[j+1];
    ws.pop();
}


//=================================================================================================
// Operations on clauses:

// Returns FALSE if top-level conflict detected (must be handled); TRUE otherwise.
// 'out_clause' may be set to NULL if clause is already satisfied by the top-level assignment.
//
bool Solver::newClause(const vec<Lit>& ps_, bool learnt, Clause*& out_clause)
{
    //for (int i = 0; i < ps_.size(); i++)
    //    printf(L_LIT" ", L_lit(ps_[i]));
    //printf("\n");
    vec<Lit>    qs;
    if (&out_clause != NULL) out_clause = NULL;

    if (!learnt){
        assert(decisionLevel() == 0);
        ps_.copyTo(qs);             // Make a copy of the input vector.

        // Remove false literals:
        for (int i = 0; i < qs.size();){
            if (value(qs[i]) != ll_Undef){
                if (value(qs[i]) == ll_True)
                    return true;    // Clause always true -- don't add anything.
                else
                    qs[i] = qs.last(),
                    qs.pop();
            }else
                i++;
        }

        // Remove duplicates:
        sortUnique(qs);
        for (int i = 0; i < qs.size()-1; i++){
            if (qs[i] == ~qs[i+1])
                return true;        // Clause always true -- don't add anything.
        }
    }
    const vec<Lit>& ps = learnt ? ps_ : qs;     // 'ps' is now the (possibly) reduced vector of literals.

    if (ps.size() == 0)
        return false;
    else if (ps.size() == 1)
        return enqueue(ps[0]);
    else{
        // Allocate clause:
        assert(sizeof(Lit)   == sizeof(unsigned));
        assert(sizeof(float) == sizeof(unsigned));
        void*   mem = xmalloc<char>(sizeof(Clause) + sizeof(unsigned)*(ps.size() + (int)learnt));
        Clause* c   = new (mem) Clause(learnt,ps);

        // For learnt clauses only:
        if (learnt){
            // Put the second watch on the literal with highest decision level:
            int     max_i = 1;
            int     max   = level[var(ps[1])];
            for (int i = 2; i < ps.size(); i++)
                if (level[var(ps[i])] > max)
                    max   = level[var(ps[i])],
                    max_i = i;
            (*c)[1]     = ps[max_i];
            (*c)[max_i] = ps[1];

            // Bumping:
            claBumpActivity(c); // (newly learnt clauses should be considered active)
            for (int i = 0; i < ps.size(); i++)
                varBumpActivity(ps[i]);

            stats.learnts++;
            stats.learnts_literals += c->size();
        }else{
            stats.clauses++;
            stats.clauses_literals += c->size();
        }

        // Store clause:
        if (c->size() == 2){
            watches[index(~(*c)[0])].push(makeLit((*c)[1]));
            watches[index(~(*c)[1])].push(makeLit((*c)[0]));
        }else{
            watches[index(~(*c)[0])].push(makeClause(c));
            watches[index(~(*c)[1])].push(makeClause(c));
        }
        if (&out_clause != NULL) out_clause = c;

        return true;
    }
}


void Solver::remove(Clause* c, bool just_dealloc)
{
  if (!just_dealloc) {
        if (c->size() == 2){
            removeWatch(watches[index(~(*c)[0])], makeLit((*c)[1]));
            removeWatch(watches[index(~(*c)[1])], makeLit((*c)[0]));
        }else{
            removeWatch(watches[index(~(*c)[0])], makeClause(c));
            removeWatch(watches[index(~(*c)[1])], makeClause(c));
        }
  }

    if (c->learnt()){
        stats.learnts--;
        stats.learnts_literals -= c->size();
    }else{
        stats.clauses--;
        stats.clauses_literals -= c->size();
    }

    xfree(c);
}


// Can assume everything has been propagated! (esp. the first two literals are != ll_False, unless
// the clause is binary and satisfied, in which case the first literal is true)
// Returns True if clause is satisfied (will be removed), False otherwise.
//
bool Solver::simplify(Clause* c) const
{
    assert(decisionLevel() == 0);
    for (int i = 0; i < c->size(); i++){
        if (value((*c)[i]) == ll_True)
            return true;
    }
    return false;
}



//=================================================================================================
// Minor methods:


// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
//
Var Solver::newVar(bool dvar)
{
    int     index;
    index = nVars();
    watches .push();          // (list for positive literal)
    watches .push();          // (list for negative literal)
    reason  .push(makeClause(NULL));
    assigns .push(toInt(ll_Undef));
    level   .push(-1);
    activity.push(0);
    polarity_sug.push(toInt(ll_Undef));
    order   .newVar(dvar);
    analyze_seen.push(0);
    trail.capacity(index+1);
    return index;
}


// Returns FALSE if immediate conflict.
bool Solver::assume(Lit p) {
    //if (verbosity >= 2)
    //printf(L_IND"assume("L_LIT") %g\n", L_ind, L_lit(p), activity[var(p)]);
    trail_lim.push(trail.size());
    return enqueue(p); }


// Revert to the state at given level.
void Solver::cancelUntil(int level) {
    if (decisionLevel() > level){
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
            Var     x  = var(trail[c]);
            assigns[x] = toInt(ll_Undef);
            reason [x] = makeClause(NULL);
            order.undo(x); }
        trail.shrink(trail.size() - trail_lim[level]);
        trail_lim.shrink(trail_lim.size() - level);
        qhead = trail.size(); } }


// Record a clause and drive backtracking. 'clause[0]' must contain the asserting literal.
//
void Solver::record(const vec<Lit>& clause)
{
    assert(clause.size() != 0);
    Clause* c;
    check(newClause(clause, true, c));
    assert(ok);
    check(enqueue(clause[0], makeClause(c)));
    if (c != NULL) learnts.push(c);
}


//=================================================================================================
// Major methods:


#define ANALYZE_LIT(p) \
            if (!seen[var(q)] && level[var(q)] > 0){                \
                varBumpActivity(q);                                 \
                seen[var(q)] = 1;                                   \
                if (level[var(q)] == decisionLevel())               \
                    pathC++;                                        \
                else{                                               \
                    out_learnt.push(q);                             \
                    out_btlevel = max(out_btlevel, level[var(q)]);  \
                }                                                   \
            }
/*_________________________________________________________________________________________________
|
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
|  
|  Description:
|    Analyze conflict and produce a reason clause.
|  
|    Pre-conditions:
|      * 'out_learnt' is assumed to be cleared.
|      * Current decision level must be greater than root level.
|  
|    Post-conditions:
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
|  
|  Effect:
|    Will undo part of the trail, upto but not beyond the assumption of the current decision level.
|________________________________________________________________________________________________@*/
void Solver::analyze(Clause* _confl, vec<Lit>& out_learnt, int& out_btlevel)
{
    LitClauseUnion confl = makeClause(_confl);
    vec<char>&     seen  = analyze_seen;
    int            pathC = 0;
    Lit            p     = lit_Undef;

    // Generate conflict clause:
    //
    out_learnt.push();      // (leave room for the asserting literal)
    out_btlevel = 0;
    int index = trail.size()-1;
    do{
        assert(confl != makeClause(NULL));          // (otherwise should be UIP)

        if (confl.isLit()){
            Lit q = confl.getLit();
            ANALYZE_LIT(p);
        }else{
            Clause& c = *confl.getClause();
            if (c.learnt())
                claBumpActivity(&c);

            for (int j = p == lit_Undef ? 0 : 1; j < c.size(); j++){
                Lit q = c[j];
                ANALYZE_LIT(p);
            }
        }

        // Select next clause to look at:
        while (!seen[var(trail[index--])]);
        p     = trail[index+1];
        confl = reason[var(p)];
        seen[var(p)] = 0;
        pathC--;

    }while (pathC > 0);
    out_learnt[0] = ~p;

    /*if (opt_branch_pbvars){ ... <code here Niklas> }*/

  #if 1
    // Simplify conflict clause (a bit more):
    //
    int i,j;
    unsigned int minl = 0;
    for (i = 1; i < out_learnt.size(); i++)
        minl |= 1 << (level[var(out_learnt[i])] & 31);

    out_learnt.copyTo(toclear);
    for (i = j = 1; i < out_learnt.size(); i++)
        if (reason[var(out_learnt[i])] == makeClause(NULL) || !removable(out_learnt[i],minl))
            out_learnt[j++] = out_learnt[i];
  #else
    // Simplify conflict clause (a little):
    //
    int i,j;
    out_learnt.copyTo(toclear);
    for (i = j = 1; i < out_learnt.size(); i++){
        LitClauseUnion r = reason[var(out_learnt[i])];
        if (r == makeClause(NULL))
            out_learnt[j++] = out_learnt[i];
        else if (r.isLit()){
            Lit q = r.getLit();
            if (!seen[var(q)] && level[var(q)] != 0)
                out_learnt[j++] = out_learnt[i];
        }else{
            Clause& c = *r.getClause();
            for (int k = 1; k < c.size(); k++)
                if (!seen[var(c[k])] && level[var(c[k])] != 0){
                    out_learnt[j++] = out_learnt[i];
                    break; }
        }
    }
  #endif

    stats.max_literals += out_learnt.size();
    out_learnt.shrink(i - j);
    stats.tot_literals += out_learnt.size();

    for (int j = 0; j < toclear.size(); j++) seen[var(toclear[j])] = 0;    // ('seen[]' is now cleared)

    //printf(L_IND"Learnt {", L_ind);
    //for (int i = 0; i < out_learnt.size(); i++) printf(" "L_LIT, L_lit(out_learnt[i]));
    //printf(" } at level %d\n", out_btlevel);
}

/* Document me!
 */
#define REMOVABLE_LIT(p) \
        if (!analyze_seen[var(p)] && level[var(p)] != 0) {                              		 \
                if (reason[var(p)] != makeClause(NULL) && ((1 << (level[var(p)] & 31)) &  minl) != 0){   \
                    analyze_seen[var(p)] = 1;                                                            \
                    stack.push(p);                                                                       \
                    toclear.push(p);                                                                     \
                }else{                                                                                   \
                    for (int j = top; j < toclear.size(); j++)                                           \
                        analyze_seen[var(toclear[j])] = 0;                                               \
                    toclear.shrink_(toclear.size() - top);                                               \
                    return false;                                                                        \
                }                                                                                        \
        }

bool Solver::removable(Lit l, unsigned int minl)
{
    assert(reason[var(l)] != makeClause(NULL));
    stack.clear_(); stack.push(l);
    int top = toclear.size();
    while (stack.size() > 0){
        assert(reason[var(stack.last())] != makeClause(NULL));
        LitClauseUnion r = reason[var(stack.last())]; stack.pop();
        if (r.isLit()){
            Lit q = r.getLit();
            REMOVABLE_LIT(q);
        }else{
            Clause& c = *r.getClause();
            for (int i = 1; i < c.size(); i++)
                REMOVABLE_LIT(c[i]);
        }
    }

    return true;
}


/*_________________________________________________________________________________________________
|
|  enqueue : (p : Lit) (from : Clause*)  ->  [bool]
|  
|  Description:
|    Puts a new fact on the propagation queue as well as immediately updating the variable's value.
|    Should a conflict arise, FALSE is returned.
|  
|  Input:
|    p    - The fact to enqueue
|    from - [Optional] Fact propagated from this (currently) unit clause. Stored in 'reason[]'.
|           Default value is NULL (no reason).
|  
|  Output:
|    TRUE if fact was enqueued without conflict, FALSE otherwise.
|________________________________________________________________________________________________@*/
bool Solver::enqueue(Lit p, LitClauseUnion from)
{
    if (value(p) != ll_Undef){
        return value(p) != ll_False;
    }else{
        //printf(L_IND"bind("L_LIT")\n", L_ind, L_lit(p));
        // New fact -- store it.
        assigns[var(p)] = toInt(lbool(!sign(p)));
        level  [var(p)] = decisionLevel();
        reason [var(p)] = from;
        trail.push_(p);
        return true;
    }
}


/*_________________________________________________________________________________________________
|
|  propagate : [void]  ->  [Clause*]
|  
|  Description:
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
|    otherwise NULL.
|  
|    Post-conditions:
|      * the propagation queue is empty, even if there was a conflict.
|________________________________________________________________________________________________@*/
Clause* Solver::propagate(void)
{
    Clause* confl = NULL;
    while (qhead < trail.size()){
        //stats.propagations++;
        Lit                   p  = trail[qhead++];     // 'p' is enqueued fact to propagate.
        vec<LitClauseUnion>&  ws = watches[index(p)];
        LitClauseUnion       *i  = (LitClauseUnion*)ws, *j = i, *end = i + ws.size();

        for (;;) {
        next:
            if (i == end) break;
            if (i->isLit()){
                if (!enqueue(i->getLit(),makeLit(p))){
                    confl = tmp_binary;
                    (*confl)[1] = ~p;
                    (*confl)[0] = i->getLit();

                    qhead = trail.size();
                    // Copy the remaining watches:
                    while (i < end)
                        *j++ = *i++;
                }
                else
                    *j++ = *i++;
            }else{
                Clause& c = *i->getClause(); i++;
                // Make sure the false literal is data[1]:
                Lit false_lit = ~p;
                if (c[0] == false_lit)
                    c[0] = c[1], c[1] = false_lit;

                assert(c[1] == false_lit);

                // If 0th watch is true, then clause is already satisfied.
                Lit   first = c[0];
                lbool val   = value(first);
                if (val == ll_True){
                    *j++ = makeClause(&c);
                    goto next;
                }else{
                    // Look for new watch:
                    for (int k = 2; k < c.size(); k++)
                        if (value(c[k]) != ll_False){
                            c[1] = c[k]; c[k] = false_lit;
                            watches[index(~c[1])].push(makeClause(&c));
                            goto next; }

                    // Clause is unit under assignment:
                    *j++ = makeClause(&c);
                    if (!enqueue(first, makeClause(&c))){
                        confl = &c;
                        qhead = trail.size();
                        // Copy the remaining watches:
                        while (i < end)
                            *j++ = *i++;
                    }
                }
            }
        }
        //stats.inspects += j - (Clause**)ws;
        ws.shrink_(i - j);
    }

    return confl;
}


/*_________________________________________________________________________________________________
|
|  reduceDB : ()  ->  [void]
|  
|  Description:
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
|    clauses are clauses that are reason to a some assignment.
|________________________________________________________________________________________________@*/
struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
void Solver::reduceDB(void)
{
    int     i, j;
    double  extra_lim = cla_inc / learnts.size();    // Remove any clause below this activity

    sort(learnts, reduceDB_lt());
    for (i = j = 0; i < learnts.size() / 2; i++){
        if (learnts[i]->size() > 2 && !locked(learnts[i]))
            remove(learnts[i]);
        else
            learnts[j++] = learnts[i];
    }
    for (; i < learnts.size(); i++){
        if (learnts[i]->size() > 2 && !locked(learnts[i]) && learnts[i]->activity() < extra_lim)
            remove(learnts[i]);
        else
            learnts[j++] = learnts[i];
    }
    learnts.shrink_(i - j);
}


/*_________________________________________________________________________________________________
|
|  simplifyDB : [void]  ->  [bool]
|  
|  Description:
|    Simplify all constraints according to the current top-level assigment (redundant constraints
|    may be removed altogether).
|________________________________________________________________________________________________@*/
void Solver::simplifyDB(void)
{
    if (!ok) return;    // GUARD (public method)
    assert(decisionLevel() == 0);

    if (propagate() != NULL){
        ok = false;
        return; }
    if (nAssigns() == last_simplify)
        return;

    last_simplify = nAssigns();

    for (int type = 0; type < 2; type++){
        vec<Clause*>& cs = type ? learnts : clauses;

        int     j = 0;
        for (int i = 0; i < cs.size(); i++){
            if (simplify(cs[i]))
                remove(cs[i]);
            else
                cs[j++] = cs[i];
        }
        cs.shrink_(cs.size()-j);
    }
}


/*_________________________________________________________________________________________________
|
|  search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&)  ->  [lbool]
|  
|  Description:
|    Search for a model the specified number of conflicts, keeping the number of learnt clauses
|    below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
|    indicate infinity.
|  
|  Output:
|    'll_True' if a partial assigment that is consistent with respect to the clauseset is found. If
|    all variables are decision variables, this means that the clause set is satisfiable. 'll_False'
|    if the clause set is unsatisfiable. 'll_Undef' if the bound on number of conflicts is reached.
|________________________________________________________________________________________________@*/
lbool Solver::search(int nof_conflicts, int nof_learnts, const SearchParams& params)
{
    if (!ok) return ll_False;    // GUARD (public method)
    assert(root_level == decisionLevel());

    stats.starts++;
    int     conflictC = 0;
    var_decay = 1 / params.var_decay;
    cla_decay = 1 / params.clause_decay;
    model.clear();

    for (;;){
        Clause* confl = propagate();
        if (confl != NULL){
            // CONFLICT

            /*EXPERIMENTAL*/trail_copy.clear();
            stats.conflicts++; conflictC++;
            vec<Lit>    learnt_clause;
            int         backtrack_level;
            if (decisionLevel() == root_level)
                return ll_False;
            analyze(confl, learnt_clause, backtrack_level);
            assert(backtrack_level < decisionLevel());
            cancelUntil(max(backtrack_level, root_level));
            record(learnt_clause);
            varDecayActivity(); claDecayActivity();

        }else{
            // NO CONFLICT

            if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
                // Reached bound on number of conflicts:
                progress_estimate = progressEstimate();
                cancelUntil(root_level);
                return ll_Undef; }

            if (decisionLevel() == 0)
                // Simplify the set of problem clauses:
                simplifyDB(), assert(ok);

            if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
                // Reduce the set of learnt clauses:
                reduceDB();

            // New variable decision:
            stats.decisions++;

            /*EXPERIMENTAL*/
            Lit pick = lit_Undef;
#if 0
            while (trail_copy.size() > 0){
                pick = trail_copy.last(), trail_copy.pop();
                if (value(pick) == ll_False){
                    pick = lit_Undef;
                    trail_copy.clear();
                    break;
                }else if (value(pick) == ll_Undef){
                    // Decide according to trail copy:
                    check(assume(pick));
                }
            }
#endif
            /*END*/

            if (pick == lit_Undef){
                Var next = order.select(params.random_var_freq);

                if (next == var_Undef){
                    // Model found:
                    model.growTo(nVars());
                    for (int i = 0; i < nVars(); i++) model[i] = value(i);
                    /*EXPERIMENTAL*/
#if 0
                    assert(trail_copy.size() == 0);
                    for (int i = trail_lim.size()-1; i >= 0; i--)
                        trail_copy.push(trail[trail_lim[i]]);
#endif
                    /*END*/
                    cancelUntil(root_level);
                    return ll_True;
                }

                if (polarity_sug[next] == toInt(ll_False))
                    check(assume(~Lit(next)));
                else if (polarity_sug[next] == toInt(ll_True))
                    check(assume(Lit(next)));
                else
                    check(assume(~Lit(next)));  // Arbitrarly default to negative polarity...
            }
        }
    }
}


// Return search-space coverage. Not extremely reliable.
//
double Solver::progressEstimate(void)
{
    double  progress = 0;
    double  F = 1.0 / nVars();
    for (int i = 0; i < nVars(); i++)
        if (value(i) != ll_Undef)
            progress += pow(F, level[i]);
    return progress / nVars();
}


// Divide all variable activities by 1e100.
//
void Solver::varRescaleActivity(void)
{
    for (int i = 0; i < nVars(); i++)
        activity[i] *= 1e-100;
    var_inc *= 1e-100;
}


// Divide all constraint activities by 1e100.
//
void Solver::claRescaleActivity(void)
{
    for (int i = 0; i < learnts.size(); i++)
        learnts[i]->activity() *= 1e-20;
    cla_inc *= 1e-20;
}


/*_________________________________________________________________________________________________
|
|  solve : (assumps : const vec<Lit>&)  ->  [bool]
|  
|  Description:
|    Top-level solve. If using assumptions (non-empty 'assumps' vector), you must call
|    'simplifyDB()' first to see that no top-level conflict is present (which would put the solver
|    in an undefined state).
|________________________________________________________________________________________________@*/
bool Solver::solve(const vec<Lit>& assumps)
{
    simplifyDB();
    if (!ok) return false;

    SearchParams    params(0.95, 0.999, 0.02);
    double  nof_conflicts = 100;
    double  nof_learnts   = nClauses() / 3;
    //double  nof_learnts   = 4000;
    lbool   status        = ll_Undef;

    for (int i = 0; i < assumps.size(); i++)
        if (!assume(assumps[i]) || propagate() != NULL){
            cancelUntil(0);
            return false; }
    root_level = decisionLevel();

    if (verbosity >= 1){
        reportf("==================================[MINISAT+]==================================\n");
        reportf("| %-9s | %-16s | %-32s | %-8s |\n", "Conflicts", "Original", "Learnt", "Progress");
        reportf("| %9s | %7s %8s | %7s %7s %8s %7s | %8s |\n","", "Clauses","Literals", "Max", "Clauses", "Literals", "LPC", "");
        reportf("==============================================================================\n");
    }

    while (status == ll_Undef){
        if (verbosity >= 1){
            reportf("| %9d | %7d %8d | %7d %7d %8d %7.1f | %6.3f %% |\n",(int)stats.conflicts,(int)stats.clauses, (int)stats.clauses_literals,(int)nof_learnts, (int)stats.learnts, (int)stats.learnts_literals,(double)stats.learnts_literals / (double)stats.learnts,progress_estimate*100);
            fflush(stdout);
        }
        status = search((int)nof_conflicts, (int)nof_learnts, params);
        nof_conflicts *= 1.5;
        nof_learnts   *= 1.1;
    }
    if (verbosity >= 1)
        reportf("==============================================================================\n");

    cancelUntil(0);
    return status == ll_True;
}


//=================================================================================================
// Debug:


void Solver::exportClauses(cchar* filename)
{
    assert(decisionLevel() == 0);
    FILE*   out = fopen(filename, "wb"); assert(out != NULL);

    // HACK: Find biggest variable index used and count the number of clauses:
    int     n_vars = -1, n_clauses = 0;
    for (int i = 0; i < assigns.size(); i++)
        if (value(i) != ll_Undef && level[i] == 0 && reason[i].isNull())
            n_vars = i+1, n_clauses++;
    for (int i = 0; i < clauses.size(); i++){
        Clause& c = *clauses[i];
        for (int j = 0; j < c.size(); j++){
            if (var(c[j])+1 > n_vars)
                n_vars = var(c[j])+1; }
        n_clauses++;
    }
    fprintf(out, "p cnf %d %d\n", n_vars, n_clauses);

    // Export CNF:
    for (int i = 0; i < assigns.size(); i++)
//        if (value(i) != ll_Undef && level[i] == 0 && reason[i].isNull())
        if (value(i) != ll_Undef && level[i] == 0)
            fprintf(out, "%d 0\n", (value(i) == ll_True) ? i+1 : -(i+1));

    for (int i = 0; i < clauses.size(); i++){
        Clause& c = *clauses[i];
        for (int j = 0; j < c.size(); j++)
            fprintf(out, "%s%d ", sign(c[j])?"-":"", var(c[j])+1);
        fprintf(out, "0\n");
    }
    fclose(out);
}

}// end namespace MiniSat